Friday, September 16, 2011

Keyhole-7 GAMBIT & Keyhole-9 HEXAGON






It’s been super-secret for so many years, but for one day only on Saturday (Sept. 17), some of the United States' once-clandestine spy satellites will be seen by public eyes for the first time.
The buzz in space security circles is that the National Reconnaissance Office (NRO) will apparently lift the veil of silence on its hush-hush early spysat hardware — space-based James Bondish satellites that performed highly classified, intelligence-gathering duties.
The odds are that NRO's GAMBIT and HEXAGON space surveillance programs of the 1960s will be the spotlighted projects. A HEXAGON satellite will be on display Saturday at the Smithsonian Institution's National Air and Space Museum's Steven F. Udvar Hazy Center, in Chantilly, Va.
At 60 feet (18 meters) long and 10 feet (3 m) wide, the HEXAGON satellites were the largest spy satellites the United States ever launched into space. The satellites took photographs of the Soviet Union and other targets around the world from 1971 to the early 1980s, according to a Smithsonian announcement.
It's all part of 50th anniversary celebration of the NRO this year. A curtain-raising reception is slated for Saturday at the Udvar Hazy Center — just down the road from U.S. space spy agency's headquarters. [10 Ways the Government Watches You  ]
Reportedly, the event will be a packed house of government civilian, military, and industry attendees. The commemoration is co-hosted by the NRO, the Smithsonian and the American Institute of Aeronautics and Astronautics (AIAA).
"The commemorative event is being held to recognize and celebrate the collective contributions that the NRO's people and innovative technologies have made to our nation’s security in supporting policy decisions, intelligence activities, and military operations around the world," an AIAA announcement stated. "As part of this event, the NRO plans to highlight examples of those contributions by unveiling two legacy satellite reconnaissance systems."
The artifacts being unveiled will be on display during the gala.

For its part, the NRO clearly has a secret legacy to stand on.
"When the United States needs eyes and ears in critical places where no human can reach — be it over the most rugged terrain or through the most hostile territory — it turns to the National Reconnaissance Office," reads a statement on the NRO website.
The NRO is the U.S. government agency in charge of designing, building, launching and maintaining America's vital intelligence satellites. From its inception as a hush-hush entity in 1960s to their out-in-the-open declassification in 1992, NRO is geared to crank out reconnaissance support to the intelligence community and Department of Defense.
"We are unwavering in our dedication to fulfilling our vision: Vigilance From Above," asserts the NRO website. "Develop. Acquire. Launch. Operate." [Most Destructive Space Weapons Concepts]
Amazing things
In the Sept. 12 edition of "The Space Review," noted military space historian Dwayne Day pointed out in an article entitled "Flashlights in the Dark" that the decades-long secrecy over two of NRO's Cold War era satellite programs — the Keyhole-7 GAMBIT and Keyhole-9 HEXAGON — is being cast off.
"GAMBIT was started in 1960, with a first launch in 1963. HEXAGON started in 1966, with a first launch in 1971. Both programs operated until the mid-1980s. Both used cameras that recorded their images on film that was parachuted to Earth," Day explained in his article. "Both were highly successful. And both represented the pinnacle of American Cold War intelligence collection technology, unmatched in capabilities by any other nation."
"Back in 1995, President Clinton signed an executive order that declassified the first reconnaissance satellite, named CORONA, and called for a review of the two programs that followed it," Day told SPACE.com. [Related: New Telescope Spots Space Hazards for Military Satellites]
"That review started in the latter 1990s, but then got put on hold. Probably the reason that these programs are finally being declassified is mostly because the National Reconnaissance Office is celebrating its fiftieth anniversary … and also because the Obama administration is more open to some declassification of historical programs, more so than the Bush administration," Day said.
Day explained that what people don't realize is that while NASA was doing amazing things in space in the 1960s and later, there was a whole other military space program that was also accomplishing amazing things.
"The NRO was operating intelligence satellites that were astounding in their capabilities. These satellites helped reveal what the Soviet Union was doing so that they could not surprise us. And they also made it possible to verify the arms control treaties that the superpowers signed in the early 1970s," Day said.
Beyond Corona
Bruce Carlson was appointed as the 17th Director of the NRO in June 2009.
Speaking last month before a gathering of small satellite developers at Utah State University, he noted that the CORONA program was developed as a work-around to an image transmission problem and provided a vital capability.
The CORONA program continued until 1972 and achieved a number of notable firsts, Carlson said:
  • First to recover objects from orbit
  • First to deliver intelligence information from a satellite
  • First to produce stereoscopic satellite photography
  • First to employ multiple re-entry vehicles, and
  • First satellite reconnaissance program to pass the 100-mission mark — 145 satellites were launched under the CORONA program.
"This year marks the 50th Anniversary of the NRO. During that time, our mission has transitioned from a mission focused on the USSR to a diverse and widely dispersed mission which includes international terrorists, drug traffickers, peacekeeping and humanitarian relief operations … to name a few," Carlson said.
Logical next step
According to Jeffrey Richelson, a senior fellow of the National Security Archive who has written extensively about the NRO and space reconnaissance, NRO throwing light on deep secrets is refreshing news.
“Gambit and Hexagon declassification is the logical next step if the NRO was going to do anything really significant for the 50th anniversary,” Richelson told SPACE.com.
Hexagon declassification was envisioned in President Bill Clinton’s 1995 executive order. There was the 2002 declassification of Keyhole-7 and Keyhole-9 (known in short hand as KH) mapping product.
"This may largely complete the process — or at least begin to complete the process — of declassifying the G and H programs — if KH-8 data and product is declassified along with KH-7. But even if it is G/KH-7 and H, it would be significant,” Richelson said. “Certainly the declassification has the potential for providing a lot of new historical data about the satellite imagery effort."

Saturday, September 10, 2011

Gravity Recovery and Interior Laboratory (GRAIL)

Delta II launches with moon-bound GRAIL spacecraft

September 10th, 2011 by William Graham
The Delta II rocket has launched on its 150th flight on Saturday, departing from Cape Canaveral’s Space Launch Complex 17 for the final time on the second of two launch opportunities – at 9:08am Eastern (13:08 UTC). The rocket is carrying NASA’s two GRAIL spacecraft, which will be used to study the Moon’s gravitational field.
Delta II/GRAIL:
GRAIL, or Gravity Recovery And Interior Laboratory, is a two-spacecraft mission being flown as part of NASA’s Discovery programme. It is expected to yield a better understanding of the Moon’s internal structure and thermal evolution. This will allow scientists to formulate a model of the Moon’s formation which can also be applied to terrestrial planets.
The principal scientific objectives of the GRAIL mission are to produce a map of the Moon’s lithosphere, to allow scientists to understand the Moon’s thermal evolution, and the evolution of breccia within the Moon’s crust, and to determine more details of the Moon’s interior, particularly the size of the Moon’s core, and the structure beneath impact basins.
The two spacecraft are identical, apart from the positioning of star trackers and instruments to allow the spacecraft to fly with their antennae pointing towards each other. They were built by Lockheed Martin, based around a bus developed for the USA-165, or XSS-11, satellite; a technology demonstration spacecraft operated by NASA and the United States Air Force, which was launched in 2005. Each GRAIL spacecraft has a mass of 307 kilograms, including 106 kilograms of hydrazine fuel.
The spacecraft are each equipped with two 1.9 square metre, 520-cell, solar arrays, which will generate at least 700 watts of power. The solar arrays will charge a 30 amp-hour lithium ion battery in each spacecraft, which will be used to store power for when the spacecraft are not in sunlight. Propulsion of each spacecraft will be provided by an MR-106L monopropellant engine, capable of generating 22 newtons of thrust.
The spacecraft are three-axis stabilised, with reaction wheels and eight warm gas thrusters, each capable of producing 0.9 newtons of thrust, being used aboard each spacecraft for attitude control. Sun and star trackers and inertial measurement units will allow the spacecraft to determine their orientation. The spacecraft carry avionics systems which are derived from those developed for the Mars Reconnaissance Orbiter, which was launched in 2005.
Each spacecraft carries two transponders operating in the IEEE S band (NATO E band), which will be used to relay data to the ground and to upload commands to the spacecraft. A further S band transponder, the Time-Transfer Assembly, will be used to transmit signals between the spacecraft to synchronise their onboard chronometers.
Two IEEE X band (NATO I or J band) transponders, the Radio Science Beacon, will be used to transmit signals to Earth for Doppler ranging. Finally an IEEE Ka band (NATO K band) transponder, the Microwave Assembly, will be used to find the distance between the two spacecraft, and track their relative motion.
The Ka band transponder forms part of the Lunar Gravity Ranging System or LGRS, which is GRAIL’s primary instrument. LGRS consists of four elements; the Ultra-Stable Oscillator, or USO, will be used to generate an oscillating signal to synchronise the instruments. This signal will then be transmitted through both the Microwave Assembly (MWA) and Time-Transfer Assembly (TTA) antennae. TTA broadcasts the signal as a ranging code, similar to those transmitted by Global Positioning Satellites. Finally, the data is collected by the Gravity Recovery Processor Assembly, or GPA, which processes it for transmission back to Earth.
LGRS is derived from the K-Band Ranging (KBR) instrument aboard the Gravity Recovery And Climate Experiment, or GRACE, spacecraft, which were launched in March 2002. GRACE, like GRAIL, consists of two spacecraft using radio signals to map the gravitational field, however it is studying Earth’s gravitational field instead of the Moon’s.
The two spacecraft also carry the Moon Knowledge Acquired by Middle school students, or MoonKAM, student outreach payload. This will be used to image areas of the Moon at the request of schoolchildren. A similar programme for Earth imagery, EarthKAM, has been operated aboard the International Space Station since 2001 and also flown on Space Shuttle missions STS-89 and STS-99. A prototype, KidSat, was also flown on STS-76, STS-81 and STS-86.
GRAIL is the eleventh mission to be launched as part of NASA’s Discovery programme, which was started in 1992. Discovery is a medium-class programme intended to study the Solar system. many of NASA’s recent planetary missions have been conducted as part of it. The first Discovery mission, NEAR, was launched in February 1996 to explore the Asteroid 433 Eros.
The next mission, Mars Pathfinder was launched in December 1996, placing a lander on Mars, and deploying the Sojourner rover. The third mission, Lunar Prospector, was launched in 1998 to study the lunar surface via spectroscopy. In 1999 the Stardust spacecraft was launched to return samples from the comet 81P/Wild 2. These samples were returned in January 2006, and the spacecraft subsequently performed an extended mission with a flyby of 9P/Tempel 1 this February, before finally being deactivated on 24 March.
The Genesis spacecraft, launched in August 2001, was the fifth Discovery mission. It collected a sample of solar wind, and returned it to Earth. During its return to Earth, its parachute failed to deploy, however some of its samples were still usable. The sixth mission, CONTOUR, was less successful. Intended to perform flybys of comets 2P/Encke and 73P/Schwassmann-Wachmann 3, CONTOUR was launched in July 2002. The spacecraft was destroyed due to a malfunction of an onboard kick motor which was intended to propel it out of Earth orbit towards its first comet encounter.
MESSENGER, the seventh mission, was launched in August 2004 and entered orbit around Mercury on 18 March this year. The eighth mission, Deep Impact, fired a probe into the comet 1P/Tempel 1, in order to study its composition. Launched in 2005, its impactor hit Tempel 1 in July of the same year, with the spacecraft then being used for an extended mission to 103P/Hartley 2.
The ninth mission of the programme, Dawn, was launched in September 2007, and entered orbit around the Asteroid 4 Vesta on 16 July this year. Following a year orbiting Vesta, it will depart for the dwarf planet Ceres, which it will also orbit. The tenth mission, Kepler, is a space telescope which is being used to look for exoplanets. It was launched in 2009.
GRAIL was launched by a Delta 356, which is a Delta II Heavy flying in the 7920H-10C configuration. It was the sixth and possibly last Delta II Heavy to be launched. Overall, its launch marked the 150th Delta II mission, and potentially its penultimate flight.
The Delta II 7920H-10C configuration consists of an Extra-Extended Long Tank Thor first stage with an RS-27A engine, fuelled by RP-1 propellant and liquid oxygen oxidiser.
Early in the ascent the first stage was augmented by nine GEM-46 solid rocket motors; six of which ignited at launch, and the other three shortly before the first six burnt out.
The second stage was a Delta-K, powered by an AJ-10-118K engine. The second stage is fuelled by Aerozine-50 propellant, with dinitrogen tetroxide being used as an oxidiser. The 7920H-10C configuration does not incorporate a third stage. A three metre, or ten foot, composite payload fairing encapsulated the spacecraft.
In the mid-1980s, launches of Delta rockets were winding down, with future payloads expected to fly aboard the Space Shuttle. Following the Challenger accident in 1986 this policy was reviewed, and in January 1987 the US Air Force ordered a new series of Delta rockets, primarily to launch Global Positioning Satellites. The Delta II made its maiden flight on 4 February 1989, in the 6925 configuration.
The 6000-series Delta IIs were built as an interim whilst the more capable 7000-series was in development. It used an Extra-Extended Long Tank Thor first stage powered by an RS-27 engine, a Delta-K second stage, and nine Castor-4A solid rocket motors. The 7000 series, which first flew in November 1990, introduced an uprated RS-27A engine, and GEM-40 solids.
The 6000-series made seventeen flights; three in the 6920 configuration and 14 in the 6925 configuration. Its final flight was made on 24 July 1992, carrying the Geotail spacecraft to study Earth’s magnetosphere. Other 6000-series payloads included nine Block II GPS satellites, four commercial communications satellites, and SDI technology demonstration experiment and two astronomy satellites; EUVE and ROSAT.
The 7000 series has seen a wider variety of configurations, with the Delta II Lite programme resulting in the development of configurations with three or four solid rocket motors, and launches being made with two or three stages, and with two different types of third stage. In all, 127 have been launched; ten in the 7320 two-stage configuration with three solid rocket motors, thirteen in the 7420 configuration with four SRMs, and twenty seven in the 7920 configuration with nine SRMs.
The 7326 configuration made three flights and the 7426 made a single flight; these had three and four solid rocket motors respectively, and both had Star-37FM third stages. The 7425 configuration, with four solid rocket motors and a Star-48B third stage, made four flights. The most-launched configuration is the 7925, which features nine SRMs and a Star-48B upper stage, and has made sixty nine flights.
The Delta II Heavy has the same configuration as the 7000 series, except that it has more powerful solid rocket motors. The GEM-46 motors, which were originally developed for the Delta III, allow the rocket to carry a heavier payload into orbit.
The Delta II is statistically the most reliable rocket in service, having only failed twice. Both failures were of 7925 configuration rockets, and both were caused by problems with the solid rocket motors.
In August 1995, during the launch of Koreasat 1, one of the nine solids failed to separate after burning out. The rocket continued to orbit, however the additional mass of the spent solid rocket motor resulted in it reaching a lower orbit than had been planned. The satellite was able to raise its own orbit, but at the expense of a significant amount of fuel.
The second failure occurred in January 1997, during the launch of the first Block IIR Global Positioning Satellite, GPS IIF-1. Thirteen seconds into the flight, the rocket self-destructed following the structural failure of one of the number 2 solid rocket motor. Over 220 tonnes of debris fell within a kilometre of the launch pad, with one piece landing in the blockhouse car park, destroying twenty vehicles.
An investigation concluded that recent changes in equipment used to transport the solid rocket motors had resulted in pressure being put onto an area of the booster, and that this had caused a crack to form around six seconds after launch. The equipment was redesigned, and additional inspections were added for future launches. The Delta II has not failed in any of the ninety four launches it has made since then.
Delta 356 could have launched GRAIL in one of two instantaneous launch windows available per day. The first of these windows opened at 8:29:45am Eastern (12:29:45 UTC), but was not taken due to unacceptable upper level winds. The second launch opportunity was, however, taken at 9:0am Eastern (13:08 UTC).
Had the vehicle launched during the first window, the rocket would have flown on an azimuth of 93 degrees. During the second window, an azimuth of 99 degrees was employed.
About two seconds before launch, the RS-27A main engine ignited, along with two LR-107-AN-11 vernier engines. About two tenths of a second before the scheduled liftoff time, six of the nine solid rocket motors ignited. At T-0, Delta 356 was released to begin its ascent into orbit. Twenty nine seconds into flight, the rocket was travelling at Mach 1, the speed of sound.
Around 79 seconds after liftoff, the three remaining solid rocket motors ignited. A second and a half later the six ground-lit solids were jettisoned in two groups of three, having expended their fuel. The three air-lit motors also burned for 80.5 seconds, before they too were jettisoned.
Around 263.2 seconds after launch the first stage depleted its fuel, and its main engine shut down, an event designated Main Engine Cutoff, or MECO. Shortly afterwards, Vernier Engine Cutoff, or VECO, occured, when the two vernier engines also shut down. Eight seconds after MECO the first stage was jettisoned, and five and a half seconds after that the second stage’s AJ-10 engine ignited. The payload fairing was jettisoned 4.3 seconds after second stage ignition.
Events after fairing separation tracked slightly different times, based on the 93 or 99 degree flight profile. In the 93 degree flight profile, the first burn of the second stage was to last 153 seconds. With the 99 degree profile used, it was seven tenths of a second longer.
The first burn was followed by a long coast phase, lasting 58 minutes and 40.6 seconds for the 99 degree profile. After coasting, the second stage ignited for its second and final burn, lasting 271.7 seconds on the 99 degree profile.
Nine and a half minutes after the second burn was complete, separation of the first spacecraft, GRAIL-A, occured. The upper stage was then manoeuvred, before the separation of GRAIL-B, which occured eight and a quarter minutes after that of GRAIL-A. A RocketCam mounted on the second stage was used to verify that separation had taken place.
Shortly after launch, the GRAIL spacecraft will deploy their solar arrays as they pass into sunlight for the first time since separating from their carrier rocket. GRAIL will travel to the Moon on a low-energy trajectory, via the Sun-Earth Lagrange 1 point.
The spacecraft are expected to enter selenocentric, or lunar, orbit between 31 December and 1 January. The spacecraft will subsequently manoeuvre into lower orbits, before they are moved into formation to begin collecting scientific data. At the start of the scientific phase of the mission, the spacecraft will be in circular orbits at an altitude of 55 kilometres.
Scientific operations are expected to commence on 8 March next year, and last for 82 days. Decommissioning of the spacecraft will begin on 29 May, and the spacecraft are expected to impact the lunar surface in June.
Delta 356 was the last rocket planned to depart from Cape Canaveral’s Space Launch Complex 17. It launched from SLC-17B, SLC-17A having been closed in 2009. Launch Complex 17, as it was then designated, was built between August and December 1956 to accommodate tests of the Thor missile.
The first Thor launch occurred from LC-17B on 26 January 1957, however it ended in failure when the rocket lost thrust and exploded on the launch pad. A second launch in April was erroneously destroyed by range safety after a faulty console caused the RSO to believe the rocket was flying in the wrong direction. The first successful launch occurred on 20 September, also from LC-17B.
Missile tests were made from LC-17B until 1957, after which it began to be used for orbital launches. The first orbital launch to be made from the pad occurred on 13 April 1960, when a Thor-Ablestar launched Transit 1B. The last of ten Thor-Ablestar launches from the pad occurred in May 1962, after which Delta launches from LC-17B began.
The first Delta launch from LC-17B was of Delta 11, carrying Telstar 1, the first commercial communications satellite. The pad was subsequently used by Delta A, B, C, E1, G and C1 rockets between 1962 and 1969. Between 1963 and 1965, six suborbital flights were also launched from LC-17B, carrying ASSET reentry vehicles to demonstrate technology for the X-20 DynaSoar spacecraft.
Three of these launches used the single-stage Thor DSV-2F, and the other three used the two-stage Thor DSV-2G, which included a Delta upper stage, however its launches are not officially listed as Delta launches. None of the six ASSET flights reached space; instead they flew shallower atmospheric flight profiles.
Delta launches from LC-17B resumed in September 1972, when the Delta 1000-series started using LC-17B. The 2000-series began to launch from the pad in 1974, with the last Delta 2000 launch from the complex occurring in 1979. From 1983 to 1989 it was used for Delta 3000-series launches and the short-lived interim Delta 4000 series made both of its launches from LC-17B; the first on 27 August 1989 and the second on 12 June 1990.
Delta II launches from LC-17B began on 11 December 1989. On 8 January 1991 the first Delta II 7000-series launch from LC-17B orbited a NATO communications satellite. In the mid 1990s LC-17B received modifications to accommodate the Delta III rocket, and in 1997 it was redesignated Space Launch Complex 17.
The first Delta III launch occurred on 27 August 1998, carrying the Galaxy 10 satellite. The mission ended in failure after the vehicle’s solid rocket motors ran out of hydraulic fluid, resulting in a loss of control and the destruction of the rocket by range safety.
The second Delta III launch in May 1999 also failed, after the second stage engine’s combustion chamber ruptured, leaving the Orion 3 communications satellite in a useless low Earth orbit. A third launch with a mock-up satellite also underperformed, reaching a lower than planned orbit. After these failures the Delta III was retired.
Because of its modifications to accommodate the Delta III, SLC-17B is the only launch pad which can accommodate the Delta II Heavy. The first launch of the Delta II Heavy occurred on June 10, 2003, carrying the Spirit spacecraft bound for Mars. Launches of standard 7000 series Delta IIs continued throughout the time that the Delta III and Delta II Heavy have used the pad, with the most recent launch from the complex having been made in September 2009 carrying the two STSS-Demo satellites for the US military.
In total GRAIL is the 164th launch to have been made from SLC-17B. Payloads launched from the pad in the past include Telstar 1, Syncom 1, Pioneers 8 and 9, Wind, NEAR, Mars Pathfinder, Mars Polar Lander, WMAP, the Opportunity rover, Spitzer, MESSENGER, Deep Impact, STEREO, THEMIS, Dawn, Fermi and Kepler.
The other pad in Space Launch Complex 17, SLC-17A, was used for 161 launches, beginning with a Thor test flight on 30 August 1957. The pad was used by Thor DM-18, Thor-Able, Thor-Delta, Thor DSV-2D rockets, followed by the Delta A, B, C, D, E, E1, G, L, M, M6, N, 2000 and 3000 series. From 1989 Delta II launches were made from the pad, using both the 6000 and 7000 series configurations. The final launch from the pad was of the last GPS IIR satellite, in August 2009.
The launch of GRAIL was the second of three planned Delta II launches this year. The next launch is the last currently on the manifest; however components to produce five more rockets do exist.
These components are for the Delta II Heavy configuration, however United Launch Alliance has stated that they can be converted to regular 7000-series rockets, which would be able to launch from Vandenberg Air Force Base without modifications to the launch pad. NASA is currently considering restoring the Delta II to its list of available launch systems after repeated failures of the Taurus-XL rocket.
The remaining Delta II launch is also United Launch Alliance’s next scheduled mission. It will carry the NPP weather satellite for NASA and NOAA, and is scheduled to launch from Vandenberg Air Force Base at the end of next month. Excess capacity on the rocket will be used to launch several small satellites.
(Images: ULA, NASA, L2 Historical (several gbs of hi res “Old School” Launch Vehicle photos – such as AFMTC and AMR era)
(As the shuttle fleet retire, NSF and L2 are providing full transition level coverage, available no where else on the internet. Click here: http://www.nasaspaceflight.com/l2/ - to view how you can support NASASpaceflight.com)

Saturday, September 3, 2011

Drones.




A flurry of advances in military technology over the past decade that has helped the U.S. and its allies redefine modern warfare. None of these advancements have had a greater impact on America's missions in the Middle East than the maturation of remotely piloted aircraft (RPA), also known as unmanned aerial vehicles (UAVs) or, more generically, drones. The U.S. Army's drone armada alone has expanded from 54 drones in October 2001, when U.S. combat operations began in Afghanistan, to more than 4,000 drones performing surveillance, reconnaissance and attack missions in Afghanistan, Iraq and Pakistan (pdf). There are more than 6,000 of them throughout the U.S. military as a whole, and continued developments promise to make these controversial aircraft—blamed for the deaths of militants as well as citizens—far more intelligent and nimble.

Whereas drones themselves are certainly not a new concept—their origins can be traced back to the 1840s—since 9/11 they can now be loaded with a variety of sensors and weapons and are controlled by highly trained operators using a joystick and video monitor thousands of kilometers from a combat zone.

"One of the most significant things that has occurred since 9/11 is the shift from, if you will, peer-to-peer warfare to a focus on irregular warfare," says U.S. Air Force chief scientist Mark Maybury. RPAs, as the Air Force refers to them because they are indeed operated by pilots, are helping U.S. troops and their allies adjust to that shift by delivering reconnaissance data and attack support against enemies difficult to spot because of their ability to blend in with noncombatants and the rugged terrain of their surroundings. [View a slide show featuring different drones used by the U.S. military]

Use of drones has grown across several branches of the military as well as the CIA (one of the earliest users of unmanned aircraft). The Air Force, for example, logged its first 250,000 hours of drone flight time between 1995 and May 2007. The next 250,000 hours of drone flight time, however, took only a year and a half, from May 2007 to November 2008. The Air Force achieved its third set of 250,000 flight-time hours in just one year, from December 2008 to December 2009.

The Department of Defense's 2012 plan calls for "purchasing more of the existing unmanned aircraft systems for current operations, improving the systems already in service, and designing more-capable unmanned aircraft systems for the future," according to a Congressional Budget Office (CBO) report published in June (pdf). The CBO estimates that the Defense Department will spend about $36.9 billion across its different branches on 730 new medium-sized and large drones through 2020.

This expansion of the military's unmanned aircraft campaign brings with it a degree of concern as drones have come under fire by critics. Some dispute the military's accuracy claims and point to unmanned aircraft as the cause of thousands of civilian deaths in the war-torn Middle East over the past decade. Others note that the fight against terrorist organizations such as al Qaeda embedded in civilian zones—most notably the killing of Osama bin Laden—has primarily been carried out using time-tested intelligence methods rather than drone-launched Hellfire air-to-surface missiles.

Dawn of the drone
The use of unmanned aircraft in war goes back 162 years, when Austria used pilotless balloons to drop bombs on Venice in 1849. As Scientific American reported at the time: "In a favorable wind the balloons will be launched and directed as near to Venice as possible, and on their being brought to vertical positions over the town, they will be fired by electro magnetism by means of a long isolated copper wire with a large galvanic battery placed on the shore. The bomb falls perpendicularly, and explodes on reaching the ground."

In the early 20th century the U.S. military recruited remote-controlled airplanes to serve as decoys or even to attack enemy targets during the First and Second World wars. From the 1950s, these aircraft began to support troops with the aid of cameras, sensors, communications equipment or other payloads. "In terms of modern use, drones really started in the early 1990s, where they were an advanced concept technology demonstration at DARPA [the Defense Advanced Research Projects Agency]," Maybury adds.

General Atomics Aeronautical Systems, Inc.'s Predator drones were introduced to combat in the mid-1990s and deployed in the U.S.'s 1999 Kosovo air campaign for surveillance and reconnaissance. Predators (which have a 20-meter wingspan) were first used in Afghanistan in October 2001 to provide intelligence and a strike capability to Operation Enduring Freedom, the official name used by the U.S. government for the war in Afghanistan. A CIA-controlled Predator drone firing a Hellfire missile killed six suspected al Qaeda terrorists in Yemen on November 3, 2002—the first use of an armed Predator as an attack aircraft outside of a theater of war such as Afghanistan, according to the Federation of American Scientists (FAS).

Stepping up drone missions
In the past year alone, the Air Force has supported more than 400 firefights involving RPAs, Maybury says. In 2010 they captured 30,000 hours of full motion video during their missions along with 11,000 high fidelity images. "We call them remotely piloted aircraft because in fact we have professionals—both pilots and sensor operators—operating them," Maybury says. "I don't even like the word 'drones.' It sounds boring personally."

The Air Force's large-scale RPA deployment began after 9/11; it had a single RPA in operation in 2001. The Air Force now operates at least four different models of medium-sized or large unmanned aircraft. In addition to its 175 Predators, there are 14 jet-powered Northrop Grumman RQ-4 Global Hawks, the largest RPAs in the Air Force's fleet with wingspans of 35 to 40 meters. About 40 turboprop-powered General Atomics MQ-9 Reapers (a larger version of the Predator) were supposed to be entering the fleet this year. The Air Force also uses the Lockheed Martin RQ-170 Sentinel, a "stealthy reconnaissance aircraft whose existence has only recently been acknowledged by the Air Force," the CBO reports.

Last year, for the first time in its history, the Air Force trained more RPA pilots than fixed-wing pilots. RPAs are often equipped with full-motion cameras, infrared cameras to provide night vision, signals intelligence sensors to eavesdrop on communications and a variety of other sensors. In addition to a pilot, each RPA has a sensor operator who directs the cameras and signals sensors during a mission. All of this information is fed to a system of "exploiters," Air Force personnel who analyze all of that streaming video and other signal intelligence coming in and feed information as needed back to the pilot and sensor operator.

Other branches of the military, as well as the CIA, have also come to rely heavily on drones. The Army primarily operates three medium-sized models of unmanned aircraft—Northrop Grumman MQ-5B Hunters, AAI Corp. RQ-7 Shadows (also used by the Marines), and two different types of Predators. The CBO estimates that the Army alone will spend about $5.9 billion in the next five years to add to its drone fleet.

The Navy is testing two new types of RPA—the long-endurance Broad Area Maritime Surveillance (BAMS) aircraft—a Global Hawk variant—and the Northrop Grumman MQ-8B Firescout unmanned helicopter. The Navy's plans call for purchasing 65 BAMS through 2026 and 168 Firescouts through 2028, according to the CBO.

ROVER ground stations
This wide variety of drones enables attacks on a diversity of enemy positions, but perhaps as significant is the ability to communicate with troops on the ground. This is done with the help of Remotely Operated Video Enhanced Receiver (ROVER) ground stations that combine a ruggedized laptop, software, a handset and a radio to give troops live, overhead intelligence from a variety of platforms—manned aircraft, unmanned aircraft, just about anything with a camera able to stream a data feed, says Chris Bronk, an information technology policy research fellow at Rice University's James A. Baker III Institute for Public Policy in Houston and a former U.S. State Department diplomat. "This helps American soldiers see beyond the next hill, in real time," he adds. The original ROVER system, developed in 2002, required a Humvee to lug it around. Newer systems can fit into a backpack.

ROVERs "are particularly transformational because now you have people on the ground who can see what the aircraft is seeing in the air in real time while also communicating with the DCGS [distributed common ground station] back in the U.S.," Maybury says. Troops with ROVERs can even request that RPA pilots and sensor operators fly or scan in a particular direction or over a particular area.

A key development in RPA operation over the past five years has been the ability to install systems of multiple cameras such as the Gorgon Stare video capture system and the Autonomous Real-time Ground Ubiquitous Surveillance Imaging System (ARGUS-IS). "Now we're able to see not just a single full-motion video but actually wide area motion imagery [WAMI], which provides multi-spot infrared imagery," Maybury says. "Ten years ago, you get a single feed, today we're looking at 65 spots of two frames a second around a wide area." A ROVER can dial into a particular channel or tell a sensor operator to follow a particular vehicle on a particular channel.

Micro air vehicles
Military and intelligence units have become increasingly interested in smaller drones that can improve reconnaissance and surveillance operations. Some of these drones are hand launched while others are even smaller and resemble birds and insects.

The Air Force Research Laboratory Air Vehicles Directorate Micro Air Vehicle Integration & Application Research Institute at Wright-Patterson Air Force Base in Ohio is dedicated to the development and testing of micro air vehicles (MAVs). Less than 0.6 meters in length, a MAV is capable of operating below rooftop level in an urban environment. It may have a fixed wing, rotary wing (helicopter), flapping wing or even no wings. The Air Force has been developing MAVs as a way of getting in close on enemy fighters, although such small devices are difficult to control (even a wind gust can take them out of position).

AeroVironment, Inc. is developing even smaller drones that weigh less than 20 grams. DARPA contracted the Monrovia, Calif., company to design and build a flying prototype "hummingbird-like" aircraft for the Nano Air Vehicle (NAV) program. In February AeroVironment introduced its 16-centimeter-long Nano Hummingbird, capable of climbing and descending vertically, flying sideways left and right, flying forward and backward, as well as rotating clockwise and counter-clockwise under remote control and carrying a small video camera.

The biologically inspired prototype is in the second phase of a three-phase DARPA NAV program, started in 2005. AeroVironment is one of four companies with phase-one contracts to develop miniature drones. The Charles Stark Draper Laboratory, Inc., in Cambridge, Mass., and Lockheed Martin have built rotary-wing NAVs, while AeroVironment and Oakland, Calif.,-based MicroPropulsion Corp. focused on flapping-wing aircraft.

Collateral damage
Drones are promoted to the American public as a way to strike against threats to the U.S. without putting airmen or soldiers in harm's way. Another purported benefit of drones is the precision with which they attack America's enemies. Numerous reports of civilian casualties, however, indicate that these robotic aircraft are precise only to a certain degree. The CIA and White House have been quick to point out they have found no evidence of collateral deaths from U.S. counterterrorism operations outside of Afghanistan or Iraq, a claim disputed on several fronts, most recently in a report compiled by British and Pakistani journalists.

Reports of the number of civilian deaths attributed drone strikes vary, particularly in Pakistan. The Long War Journal, a Web site produced by nonprofit Public Multimedia Inc., claims that, since 2006 in Pakistan alone, drone strikes have killed 2,080 leaders and operatives from Taliban, al Qaeda, and allied extremist groups as well as 138 civilians. Meanwhile, the U.S. government claims that its drones have killed more than 2,000 militants in Pakistan and about 50 noncombatants since 2001. The Bureau of Investigative Journalism, a not-for-profit organization based at City University in London, disputes the U.S. government statistics, saying its research concluded that of the 2,292 people killed in U.S. attacks since 2004, 385 were civilians, including more than 160 children.

In an August 14 New York Times editorial, former director of national intelligence Dennis Blair, a retired admiral, pointed out that, particularly in Pakistan, "drone strikes are no longer the most effective strategy for eliminating al Qaeda's ability to attack us." His reasoning: "Drone strikes hinder Qaeda fighters while they move and hide, but they can endure the attacks and continue to function." In the meantime civilian casualties from drone strikes discourage support within Pakistan for the U.S.'s efforts to eliminate al Qaeda from that region, he wrote. Blair, however, does not call for an end to drone strikes but rather closer coordination between the U.S. and Pakistan militaries when planning such strikes.

The Future
One of the U.S. military's goals is to increase the use of drones on a variety of mission types. In addition to adding MAVs and NAVs to the mix, Maybury sees Air Force RPAs delivering fuel and other supplies to troops in the field. RPAs will also become increasingly autonomous, monitored but not necessarily piloted by humans. This will not be easy as autonomous systems must have the capability to adapt to changing conditions with the help of artificial intelligence that aids in decision making. Still, a long-term goal is to create fleets of RPAs that can travel as a self-coordinated unit and strike in concert. The Air Force claims it will build in override controls that enable pilots on the ground to reassign or reroute RPAs if necessary.

Missions for unmanned aircraft systems are expected to expand from reconnaissance and attacking ground targets to a much wider array of missions, including personnel recovery, airborne refueling, medical evacuation, and missile defense (pdf), according to FAS.

In addition to launching missiles, future drones may someday be able to fire directed energy weapons, including lasers to disrupt or destroy enemy equipment and high-power microwave systems designed to burn enemy combatants without being lethal.

Drones will also be able to stay in the air for years, rather than hours or days, at a time. "Last year, we did a lot of work in energy, which includes ultra-long endurance aircraft such as the Vulture and Integrated Sensor Is the Structure (ISIS), which are powered in part by lightweight solar cells," Maybury says.

Regardless of how far drone technology advances it is clear that the utility they have demonstrated in supporting U.S. troops over the past 10 years will ensure that these remotely controlled aircraft are here to stay.